_AD-A053 247 YALE UNIV NEW HAVEN CONN DEPT OF COMPUTER SCIENCE F/I6 9/2 .
4 THE DEFINITION MECHANISM FOR STANDARD PL/I.(U)
SEP 76 M MARCOTTYs F 6 SAYWARD N00014=75-C=0752

NL
END
iLNED
B=78

UNCLASSIFIED

—

—

|

-

|'O fff uﬂlizﬁ 22
e e 132 nmzz
e e =

| B

"m 1] == iR

s
|

= a2 e

Iz
O

I

MICROCOPY RESOLUTION TEST CHART
"{AH”N!‘\ BUREAU OF STANDARDS 19634

R e Y b L 2N

’ECU'!TV CLASSOFICA?IGN OF TH!S PAGE (When Pate Fnlecy") s

. READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 72, GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
GMR-2297

I and Subtitle) -

{ : : @: The Definition Mechanism for Standard PL/I ,

<},

6. CONTRACT OR GRANT NUMBER(s)

\ ¢ Michael /Marcotty @\%_~§_
) Frederick G./éayward (:: N4F¢&4'75'C' 752)
’1"' 21 ? F——' ' 4 l,_F
R 9. PERFORMING ORGANIZATION NAME AND ADCRESS 10."FROGRAM ELEMENT. PROJECT, TASK
’ Yale University
Department of Computer Science “ (fﬂ<2 e
: 10 Hillhouse Ave, New Haven, CT 06520 !
s 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DAY SEP 876 /
; Office of Naval Research i
! Information Systems Program T WUWBER OF FEOFE .
Arlington, Virginia 22217
14. MONITORI & ADDRESS/:f d:tlerent from Controlling Office) 15. SECURITY CLASS. (of thia report)
‘ - \
Yé Unclassified v
15a. DECLASSIFICATION/DOWNGRADING
// : . SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
Distribution of this report is unlimited

7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if n.ﬂl!erenl trom Report)

i ;
= Wﬁ—,—.‘___—.——
18. SUPPLEMENTARY NOTES f‘ &8 19(3]

>§
=
[

19. KEY WORDOS (Continue on reverse side if necessary and identify by block number)
formal definition PL/I
standards &
BASIS/I
programming languages
semantics
20. ABSTRACT (Confinue on reverse side If necessary and identify by block number) .

The mechanism used to define the programming ianguage PL/I in the recently
adopted American National Standard is presented. This method provides a
rigorous though semi-formal specification of the language. It uses the model
of - translation of programs into an abstract form to define the context-free .
and context-sensitive syntax. The semantics are defined by the interpretation
of the abstract form of the program on a hypothetical machine. The method and
mctalanguage are presented along with several small examples to illustrate the
definition technique's features. The complete definition process is shown by =

DD , S5, 1473 coimion o 1siov es 1s opsovete WAL

ST OE TS WY
YR RULLY LECCiE T MRS

{ 420
\) the definition of a small example language.

R

| DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

k%

Research Publication GMR-2297

THE DEFINITION MECHANISM FOR STANDARD PL/I

Michael Marcotty*
Computer Science Department
Research Laboratories
General Motors Corporation
Warren, Michigan 48090

Frederick G. Sayward**
Department of Computer Science
Yale University
New Haven, Conneticut 06520

Part of this work was done while the author was at the University
of Massachusetts, Amherst.

Part of this work was done while the author was at Brown Univer-
sity, Providence, R. I. under the sponsorship of NSF Grant
GJ-28074 and part at Yale University under ONR Grant
N00014-75-C-0752,

ALSESSTY. e
December 1976 &y

L

"

N AN T NGED
Submitted for publication in JUSTIFICATION

IEEE Transactions on Software Engineoring ! e S E

LI 11

. "

{

VAN

HETRITETIGR KVRTLATTYTY ORPED

AR

e w WAL

Abstract

The mechanism used to define the programming language PL/I in the
recently adopted American National Standard is presented. This
method provides a rigorous though semi-formal specification of the
language. It uses the model of translation of programs into an
abstract form to define the context-free and context-sensitive
syntax. The semantics are defined by the interpretation of the
abstract form of the program on a hypothetical machine. The method
and metalanguage are presented along with several small examples to
illustrate the definition technique's features. The complete
definition process is shown by the definition of a small example
language.

TABLE OF CONTENTS

I. INTRODUCTION
1.1 Prelude
1.2 A short History of BASIS/1
1.3 Prerequisites

II. THE DEFINITION METHOD
2.1 The Abstract Machine
2.2 The Definition Process

III. THE ABSTRACT MACHINE'S DATA
.1 Tree Terminology

.2 The Machine State
3 The Metabrackets
4
5

The Definition of Trees

3
3
3
3
3.5 Unique-names and Designators

IV. THE ABSTRACT MACHINE OPERATIONS
4.1 The Execution of Operations

4.2 Operation Format

4.3 Variables

4.4 Tree manipulation Instructions

4.5 Control Instructions

4.6 Validity Checking

4.7 Dynamic Macro

V. INFORMAL DESCRIPTION OF SAL

.1 Variables

Assignment Statements and Expressions
Conditional Statements

2
3
4 L

5 Input and Output

6 The Return Statement

VI. THE RUNNING EXAMPLE

VII. INITIALIZATION OF THE ABSTRACT MACHINE
7.1 State of the Abstract Machine During Translation
7.2 Machine Initializatlon
7.3 The Define-program Operation
7.4 The Running Example

VII1. THE CONCRETE SYNTAX
8.1 The Low-level Syntax
8.2 The High-level Syntax

1X. THE TRANSLATOR (PARSE PHASE)
9.1 The Operations
9.2 Application to the Running Example

PAGE

UV =

N o wn

10
10
11
12
13
17

18
19
20
22
22
26
29
30

31
31
32

32
33
33
34
35
36

37
37
38

39
40
41

o i e NS S0 B A A i 9 o 55 I S o e’ il e A .

1ii

X. THE ABSTRACT SYNTAX 46

XI. THE TRANSLATOR (CONSTRUCTOR PHASE) 50

! : 11.1 Expanding the Concrete Tree 50
i 11.2 Analyzing Declarations 51
' 11.3 Building the Abstract Tree 52
11.4 Application to the Running Example 58

XII. THE MACHINE-STATE SYNTAX 61

XIII. THE INTERPRETER 62

13.1 Initialization 62

13.2 Statement Interpretation Control 63

13.3 Interpretation of Statements 64

13.4 Expression Evaluation 66

13.5 Storage Manipulation 67

13.6 Storage Reference 67

13.7 Abnormal Termination 68

13.8 Application to the Running Example 68

XIV. POSTLUDE 75

XV. REFERENCES 76

o

NRRSPES

1. INTRODUCTION

1.1 Prelude

It is all very well for Humpty Dumpty to say "When I use a word,

i it means just what I choose it to mean'" but unless the audience has access

to his dictionary, understanding is very difficult. We rely heavily on the
meaning of words being constant. For example, when we buy a bottle of

aspirins, we count on the effect of the tablets being essentially the same,

T

no matter who made them, advertisement claims notwithstanding. |

e s AR

‘- In the United States, the U. S. Pharmacopia assures the user that 1
the drugs it lists are of standard composition. Although this is defined
; primarily for the pharmacist and is written in a precise technical language, ?

it 1s consulted by many sophisticated users who understand its terminology.

% The standards for programming languages form an analogous set of
definitions. Their existence assures the user that a program written in a
standard language can be moved from one implementation to another. However,
the definitions are directed principally at the implementor and not the user.
Sophisticated users and text-book authors, for example, will also want to read
the formal definition of the language to get the final word on the minutiae

of the language. The definition is not a tutorial document but must provide a
complete and unambiguous specification of the language and this requires a
considerable amount of formalism. In general, this formalism has been absent

in the past, resulting in disparities between different implementations of the

"same'" standard language.

Recently, a definition of the programming language PL/I prepared

by a Joint Project sponsored by the European Computer Manufacturers'
Association (ECMA) and the American National Standards Institute (ANSI) has
been adopted as a standard by ANSI. This language is defined in "BASIS/1"
[E2] using a semi-formal definition method. Although languages such as |
BASIC [L3], ALGOL 68 [W4], and indeed PL/I itself [A2, A3, L4, L5] have been
defined formally, this is the first time in a standard that both the syntax
and semantics of a programming language have been defined with such a

degree of rigor.

The purpose of this paper is to preseat an introduction to the
definition method of BASIS/1 bhv using it to define a small artificial
language, SAL, chosen to illustrate the salient features of the technique.
The small size of SAL, helped by many examples, permits an overall view
of the method un&ﬁpe&ed by a mass of detail. As a further simplification,
we have only described those parts of the BASIS/1 formalism required for
the specification of SAL. However, we indicate where metalinguistic extensions
are needed in defining a language like PL/I. The merits and demerits of
the formalism are not discussed.

The paper is organized as follows: section 1 is an overview and
discusses the PL/I standardization project in general, sections 2 through
4 define the metalanguage of BASIS/1, sections 5 and 6 provide a transition
point with an informal discussion of SAL, and sections 7 through 13 give a

formal definition of SAL using the metalanguage.

1.2 A Short History of BASIS/1

In 1969 the Joint Project for PL/I standardization was launched by
ECMA and ANSI. The standard was developed through a process of successive
refinements of the working document, BASIS/1, with new versions published
about every six months. As a starting point, IBM gave the project their
1969 March PL/I Language Specifications modified to exclude some items
thought to be unsuitable for standardization. These PL/I specifications
were written in English and the Project soon realized that a more formal
style would be necessary to obtain the required precision in the definition

[B6].

The IBM Vienna Research Laboratories had by that time published a
completely formal definition of a version of PL/I [A2, A3, L4, L5] in
what is now known as the Vienna Definition Language [L3, W3]. This
definition was based on the notion that interpretive execution of a
program on an abstract machine constitutes a semantic description of the
program. Originated by McCarthy [M1l, M2], Landin [L1, L2], and Elgot [El],
this concept was first followed up by IBM Vienna. In the early stages
there was also a parallel effort at the IBM Hursley Laboratories in England
by Beech et. al. [A4, B2, B3, B4], who favored a semi-formal definition
of PL/I using a machine-state that more closely resembled actual

implementations.

Despte the perceived need for a rigorous definition, the Project
felt that the strict formalism of the Vienna method would hinder the
acceptance of the future standard. It was therefore decided to base the

definition on the Hursley approach and retain the English language flavor.

The language they developed to define PL/I, the BASIS/1 metalanguage, was

a semi-formal programming language with defined phrases that express the

operations used in the definition allied to a completely formal specification
of the metalanguage's operands. Although adopted by the whole project,

the bulk of the work was carried out by a relatively 'mall subcommittee [B7].

In accordance with ANSI standardization procedures, beginning on Mareh
28, 1976, BASIS/1 was made available to the world-wide computer community
for public comment. The result was twofold: first, several small technical
errors were detected and second, modifications to the proposed PL/I were
incorporated. For example, the standardization committee had decided to
exclude the % INCLUDE feature from standard PL/I on the grounds that its
inclusion would make unfair requirements on an implementor's operating
system. Public outcry from structured programming enthusiasts, however,

led to the incorporation of the % INCLUDE statement into standard PL/I.

BASIS/1 was accepted by the ANST subcommittee on standardizing PL/I
and on August 9, 1976, ANSI made this decision official. This has the
following implication: 1if any U.S. government agency wishes to establish
a standard regarding PL/I, the BASIS/1 standard must be used. For example,
if the U.S. Army wishes to buy only computers with standard PL/I compilers,

then those compilers must conform with BASIS/1 [s1].

o

The current activity of the standardization committee is to develope
subsets of PL/1 that are suitable for standardization. This task had been
started during the preparation of the full standard but was postponed for
lack of effort. Standard subsets were also requested during the public

comment period. A standard realtime programming sublanguage is being

developed and other types of sublanguages are under consideration.

1.3 Prerequisites

To understand BASIS/1 requires same acquaintance with the general rotion of
formal syntax and operational semantics as well as a familiarity with some
existing version of PL/I. Here, we assume some technical background in formal
syntax and semantics although a knowledge of PL/I is not essential. The reader
is referred to [B5] for a general survey of the structure of PL/I, to [a1] for

an introduction to formal syntax, and to [w2] for operational semantics.

2. THE DFFINITION METHOD

In 1962 Garwick[G1] proposed that the best way to provide a complete
definition of a programing language was a particular implementation on a
specific machine. This method of definition is obviously unsatisfactory for
a machine independent language, nevertheless, it is frequently used in practice.
It is not unknown for an implementor to "correct" a discrepancy between a

compiler and its manual by changing the manual!

The definition method of BASIS/1 escapes from the inevitable interaction
with host hardware and operating system by making use of a hypothetical
machine devoild of any connection with specific real hardware. The definition
is thus operational in nature, i.e. the meaning of a construct of the language
is specified by the changes its execution causes in the state of the machine.
These changes are described algorithmically in the definition, not because
the algorithm must be followed precisely by an implementation but because
it is a systematic way of achieving a complete definition of a complex
language, thus able to answer unforseen questions. Implementations are
free to use other algorithms and to take advantage of particular hardware

features to provide the syntax and semantics specified by the definition.

| -

Using the operational technique, BASIS/1 has specified every detail of PL/I
in one of three ways:
- 'The exact specification is supplied in BASIS/1.
- The detail is specified as "implementation defined" in BASIS/1.
For example, the maximum value for nuwbers is left for the
implementor to define.
- The detail is specified explicitly as being "undefined". For
example, the sequence in which subscripts are evaluated is undefined.
This m2ans that the implementor is free to choose the sequence but
does mot need to specify it to the user.
The essential point is that there are no gaps in the definition where nothing

is specified at all.

BASIS/1 describes what an impiementation must do to conform with the
standard. As indicated above, an implementation is given great flexibility
and may also choose to extend the language. The basic measure of conformity
is that the implementation must provide all the linguistic features defined
in BASIS/1 and that implementation defined extensions must not effect programs

not using such extensions. Note that contormity is not that a given program

with given input data must producc the same output data on all implementations. :

Ly The Abstract Machine

Although abstract, the hypothetical machine used in the definition has '
a considerable resemblance to the architecture of the real machine. The

abstract machine is shown schematically in Figure 1. -

MACHINE OPERATIONS
(described by a set of algorithms)

i~

MEMORY
* (changing machine-state tree)

machine-state

1

CRACTER-LISTS
REPKESTUTING P'oGRAMS
/ OUTPUT DATA

=
INPUT DATA
l: . | . :

Figure 1. The Abstract Machine

The machine has a set of operations defined by algorithms that make :
use of a small set of standard basic instructions. Thus the algorithms

are analogous to the microcode of a real computer.

The machine also has a memory whose contents can be changed by the
machine operations. In this memory are stored the information used to
control the execution of machine operations, a representation of the program
being defined, and the values of the program's variables and datasets during

its interpretation. The abstract machine's memory is thus the equivalent

of both a real computer's main store and its microcode working store,
together with on-line auxiliary storage. At any point in the definition
process, all the information in the memory is represented by a single tree

that defines the "machine-state."

22 The Definition Process

PL/T is defined by specifying the sct of legal states of the abstract

— »

machine and by defining algorithms for the machine operations. These
operations are linked together into a single algorithm whose behavior
specifies the meaning of any PL/I construct. For clarity of presentation,

the algorithm is viewed as two separate processes: a translator which

consists of parser and constructor phases, and an interpreter. Figure 2 |

shows a schematic representation of the definition algorithm.

CHARACTER PARSER |———CONCRETE ___ SJCONSTRUCTOR ABSTRA
LIST PROGRAM PROGRAM
INTERPRETER |y OUTPUT
. a —J —_J——g‘ PILES
INPUT
TRANSLATOR SIEES
Figure 2. The Definition Process =

The first step is to read in a list of characters representing the
program to be defined. An attempt is made to parse this character-list
according to the syntax of the written language. We use "attempt' here
because, throughout the definition, checks are made that the program
being defined is valid by the rules of the language. If the program
fails any one of these tests it is rejected and the definition process
stops at that point, leaving the meaning of the illegal program undefined.

Only a valid program has a defined meaning.

Parsing the program transforms it character-list representation into

a tree structure, the '"concrete program,'" stored in memory. The next step

is to construct from this concrete program an internal form suitable for

interpretation, the "abstract program." The translator's parsing and

construction phases have many analogies with the phases of a compiler
that build the internal form of a program prior to the code generation
stage. The result is an abstract form of the original program where all
the syntactic devices required in the written form of the program have
been deleted and only those parts that are concerned with its meaning
remain. During this translation phase, further validity checks are
made on the program. For example, there is a check that no illegal

combinations of data-types are present in expressions.

The final step in the definition process is the interpretation of
the abstract program. During this phase, the abstract machine behaves
very much like a real computer executing a program. For instance, part
of the machine-stare contains the values of the program's variables, while
another part keeps tract of the current statement being executed. In
addition, the abstract machine reads and writes datasets. The meaning of
the program is defined by the sequence of machine states generated as

the program is interpreted.

The existence and relationships of the machine-state, the three
forms of the program, and the datasets, as used in the definition process,

are illustrated in Figure 3, an expansion of Figure 2.

PARSER
WMOHINE-STATE © mACKINE-sTATR mOrINE em ey R gp——
ADSTRACT CoNCRETR ABSTRACT l
A Mo oo MotnE AserMct oigad asermcy o
A0 L8 - PROG!
DroRA T sl INVORMATION SN INrOMATION ~ MEFNILENTATION Rrusermrion A8

INPORMATION ARPRESENTATION

Figure 3. The Expanded Definition Process

——

10

3 The Abstract Machine's Data

All the data in the abstract machine are in the form of a tree.
In this section we define some general tree terminology and then use

these definitions to describe the tree-like data of the abstract machine.

3.1 Tree Termindlogy

In defining tree terminology, we refer to the example tree in

Figure 4.

Tigure 4. An example tree structure
g P

Each of the points marked with a circled reference number is a node

of the tree. Nodes @ v @ § »w vy @ are subnodes or components

e e

11

of node @ . Nodes and @ are immediate subnodes of and are

immediately contained by node <:> . A node's immediate subnodes are

ordered from left-to-right and the meaning of the terms "first", "last",
"leftmost", "rightmost", and "follows' are applied intuitively. Some nodes,
for example, (E{) and (::) » do not have any subnodes. These are the

terminal nodes of the tree.

Node@is'cherootmdeofthetree. Each of the other nodes are subtree
nodes forming four immediate subtrees. Nodes @, @, @, and @ are the

root nodes of these subtrees and themselves contain subtrees, and so on. Same

subtrees are degenerate in that they consist of only one node, the root node.

A reference to the root node of a tree is a reference to the whole tree unless

otherwise stated.

Each node has a type associated with it. In Figure 3, for example, these

are "A", "B", . . . , "J". In one tree there may be several distinct nodes of

the same type, for example nodes @andareboth of type "D".

Although not used in defining SAL, BASIS/1 uses additional tree
terminology to aid in defining PL/I's procedure calls, argument lists,

and data structures.

3.2. The Machine State

The machine-state is a tree structure that campletely represents the
state of the abstract machine at all stages in the definition process. There
ark, of course, rules by which the tree is constructed just as there are rules
by which valid sentences of a language can be constructed. These are the
rules which comprise the syntax of the language. Similarly, we can refer to

the rules for constructing the machine-state tree as the machine-state syntax.

These rules specify the types of nodes that may be connected together in

the tree.

12

Although there is just one tree throughout the definition, there are
two distinguishable subtrees of the machine-state that play major roles.
Hence, for convenience only, we isolate these subtrees and describe them

by three quasi-separate syntaxes.

During the translation from the character-list form of the program
to its abstract form, the concrete program is a subtree of the machine-
state. The syntax of the concrete program is defined by a separate set

of rules comprising the concrete syntax. The terminal nodes of the concrete

program are the characters of the written form of the program. Thus the
concrete-syntax defines the character-list representation of the set of

syntactically valid programs.

The abstract program is another separate subtree of the machine-state.
It is the end product of the translator and it is constructed in accordance

with the abstract-syntax. The terminal nodes of the abstract program are

not characters of the language being defined; rather, they are abstract

entities used for program interpretation.

3.3 The Metabrackets

The three syntaxes are defined in Backus-Naur Form, BNF [Bl], with a
few extensions as described in Section 3.4. To help distinguish the type
names used in the three syntaxes, characteristic metabrackets are used as

part of the name:

SYNTAX METABRACKETS EXAMPLE
Concrete K 4 fprogram}
Abstract < > <program>

Machine-state R > <“operation

———

The concrete syntax has the symbols and keywords of the programming

language as its terminal symbols. The other two syntaxes denote
terminal symbols by underlining the type name. For example, <fixed> and

<undefined» are respective terminal symbols of the abstract and machine-

state syntaxes.

3.4. The Definition of Trees
The rules of syntax are expressed as production rules in slightly

extended BNF, For example, cansider the BNF production:

fexpression} ::= {expression-two}

| fexpression} + fexpression-two}

This production specifies that an fexpression} node may either have a
single subnode, an fexpression-two}, or it may have three subnodes, an

fexpression} followed by a "+" followed by an fexpression-two}.

The symbols "::=", and "|" are metasymbols; they are not part of the
lanquage being defined, but part of the definition mechanism. In addition
to these metasynbols of BNF, the syntax rules in BASIS/1 also wse "(", "]",
"{", and"}". These extra metasymbols are used as follows:
1. "[" and "]" enclose an optional syntactis expression. The production
rule for fexpression* given above can be written equivalently as rule
HL16 in the concrete syntax of SAL:

HL16 fexpression} ::= [fexpression} +] fexpression-two}

2. "{" and "}" enclose a syntactic expression, generally a set of

options from which one must be chosen. For example, also from the

concrete syntax of SAL:

HL15 {logical-expression} ::= {identifier}
| fexpression} (= | ¥} {expression}

This production states that a flogical-expression} either has a single

fidentifierp immediate camponent or it has three immediate camponents,

two fexpression} nodes separated by either an "=" or a "$" character.
Although not needed to define SAL, BASIS/1 uses an additional "permutation"
metasymbol to reduce the number of BNF productions needed to express the
fact that PL/I's myriad of data attributes may be listed in any order in

data declaration statements.

If we add the following productions to HL15 and HL16:

HL17 fexpression-two} ::= [fexpression-two} *] {expression-onet
HL18 fexpression-one} ::= {primitive-expressionp

| = fexpression-onep

| (fexpressionp)
HL19 fprimitive-expression} ::= {identifier}

| fconstant}

we can draw an example fram the set of trees of which fexpression} is the

rcot node.
{expre?sion)

(expn!;ion) + fexpression-two}
{expmsiion—ﬁn) fexpression-one}p
fexpressiomonep fprimitive-expression}p

fprimi tive-expression} Kcmsl»tant)

fidentifier)

—— oy

Because this tree does not have all its terminal nodes, it is called a

partial tree.

An alternative to this graphic representation of trees is

their description by "enumeration". The enurerated tree form of the above

partial tree is:

fexpression}:
fexpression}:
fexpression-twop:
fexpression-oneb:
fprimi tive~expressionp:
fidentifier};;;;
+
fexpression-twop:
fexpression-one}:
fprimitive-expression}:
fconstant}.

The rules for describing trees by enumeration are:

1. the type of root node is listed. Optionally, this is followed
by a colon and a listing of
2. the immediate components of the root node. Each of these

components may itself be an enumerated tree.
An enumerated tree is terminated by

3. a semicolon. A string of semicolons at the end of an enumerated

tree may be replaced by a period.

16

If a particular node of an enumerated tree is to be referenced specifically,
the type name of the node can be followed by a conma and a local name for
the node. Thus, in the partial tree:
fexpression}:
fexpressionp:
fexpression-twop:
{expression-oneb; ;
+
fexpression-two}, rx:
fexpressiomone}.

the name rx can be used to refer to the second fexpression-two} node.

For clarity, enumerated trees are generally shown in an indented
form. However, the notation does not depend on this for unambiguous

representations of a tree.

Frequent use is made of sequences of one or more nodes of the same type.
For exawple, in the abstract program the statements of the concrete program
are represented by a sequence of <executable-unit> subtrees. These are
col lected together as immediate components of an <executable-uni t-1ist> node.
This notatic. is used wherever lists are required in the <machine-state’.
Ssimilarly, in the concrete program, there is frequent use of nodes of the
same type separated by coma nodes. These are collected together as immediate

subnodes of a —camnalist node. ‘The form of the enumerated tree for a

{declaration-camalist} is:

tdeclaratian-commalisth: {declaration-cammalistp: fdecl arationfmm istp:
fdeclaration}. fdeclarationp :did arationp
£.r v .
{:c'iec laration}. {ct;cl aration}
|
fdeclaration}.

and 80 on. The metabrackets around the commas are used to avoid conflict

with the notation of the enumerated tree.

e

3.5. Unique-names and Designators

Each node of the €machine-state» has a unique-name implicitly associated
with it. During the definition process each node, as it is created, is given
a unique-name that is different fram the unique-names of all previously created
nodes, whether or not these nodes still exist. These unique-names can be

visualized as the circled reference numbers on the nodes in Figure 4,

Some nodes are of type <designator®». A designator node contains a copy
of the unique-name of some other node and thus points to that node. Although
designator nodes can point to any type of node, generally, for clarity, they
point to one type of node only and have a type name that contains "-designator"
as a suffix. For exanple, a <declaration-designator> is a node that only
points to <declaration> nodes. In the abstract program a <variable-reference>

contains a <declaration-designator> that points to the <declaration> for the

variable being referenced. Figure 5 shows the way that this takes place in the
<{program>, :
<program> . ?
(deélarellon-”f.h wwcutamol-unn-)ist) |
<executable-unfty .
<declarationy) L~ <assignment-statement?
Zidentifier) <varfable-description) <variablc-reference) <expressiony
<ypclaration-drsiqnatory
Figure >. A fragment of an abstract program with a designator

Designators and trees are such that it is possible to reference the nodes

that contain a designated node as well as the cawponents of the designated node.

Two trees are said to be equal if they differ only in the unique-names
of their nodes. A copy of a tree is constructed by creating a tree equal
to the given tree and then changing any designators in the newly created tree
that point to nodes in the given tree to point to the corresponding nodes

E - in the new tree.

4. THE ABSTRACT MACHINE OPERATIONS

The operations of the abstract machine are specified by algarithms expressed
in English prose. Although this makes the definition somewhat less formal,
each algorithm is presented in a standard format and is written using precisely
defined keywords and phrases, in effect a kind of programing language. A
machine operation algorithm has many characteristics of a program; it has
local variables that designate nodes on the <machine-state», it can
create temporary trees, and there are basic instructions for manipulating
trees and doing arithmetic. Operations may invoke one another, possibly

recursively, passing arguments and returning values. Internally, the

control schemata are the usual scquential, conditional, and iterative

[forms.

In defining SAL we will use all of the abstract machine instructions]

that are used in BASIS/1 to define PL/I.

T —— D ———

g
i %
|
;

19

4.1 The Execution of Operations

At any time during the abstract machine's execution, there is one
"active" operation, i.e., the one that the abstract machine is currently
executing. The <operation> tree describing it is the rightmost element
of an <operation-list> in the <machine-state>, as described in the next
paragraph. Fach <operation> has a subtree containing a list of designators
pointing to its parameters, local variables with their current values,
locally constructed trees, and an indication of where in its algorithm it
is currently executing (i.e., a location counter). The invocation of an
operation causes its <operation» tree to be added to the right-hand end of
the <operation-list» and it thus becomes the active operation. When the
operation terminates, it and any temporary trees it has created are
deleted from the list and the operation that invoked it once again
becomes the active operation, resuming at the point of suspension. 1In
BASIS/1, the exact structure of an <operation» is left unformalized and
unspecified since it is assumed that the workings of the operation can

be understood without lower level of detail.

The <machine-state» at the start of the definition process has a <control-
state» companent with an <operation-1ist® containing a single operation
named "define-program". This operation invokes other operations that build
the concrete program, translate it into the abstract program and then start
its interpretation. At this point, the situation is similar to that of an
operating system that has loaded a problem program and is starting its
exccutin. Gontrol is passed to the problem program, often with a change of
hardware location-counter. In the abstract machine a <program-control?
component of the <machine-state? is created containing a second <operation-list®

and, while it exists, its rightmost elament is the active operation. The

operation at the right-hand end of the <operation-1ist» in the <control-state»

is put into a state of suspended animatiaon until the <program-control» and

P

its <operation-list>» are deleted fram the <machine-state». That happens

when the interpretation of the abstract program terminates.

4.2. Operation Format

The following example is an operation of the abstract machine which
defines SAL. It is not expected that the reader will fully understand
the operation at this point. It is presented here to illustrate the

structural features common to all operations.

Operation: create-assignment-statement(cas)

result: an <assigrmment-statement>

Step 1. Let id and cx be respectively the immediately contained fidentifier}
and fexpresion} of cas.
Step 2. Perfom find-abstract-declaration(id) to obtain a <aeclaration-
designator>, dd.
Step 3. Perfarm create-expression(cx) to obtain an <expression>, ax.
Step 4.
Case 4.1. ax immediately contains a <variable-reference>, vr.
The <attribute> contained by the <declaration> designated by
dd must equal the <attribute> contained by the <declaration>
designated by the <declaratiom-designator> of vr.
Case 4.2. ax immediately contains a <canstant>, c.
If ¢ contains an <integer-value» then the <declaration>
designated by dd must contain <fixed>, otherwise it must
contain <bit>.
Case 4.3. (Otherwise).
The <declaration> designated by dd must contain <fixed>.
Step 5. Return an
<assigmment-statement>:
<variable-reference>:
dd;
ax. -

l where: cas is an fassigrmment-statement}

The written description of the operation consists of a heading and a

body. The heading always contains the word "Operation" and the underlined

21

operation name. The remainder of the heading depends on the details of the
operation, whether it has parameters, and whether it returns a value. The 3
operation create-assigmment-statement has a single parameter with the local
name “"cas". A parameter is a designator pointing at a node in the <machine-
state», possibly in the caller's local storage. Parameters are thus

passed by reference and it is possible to change the value of the tree

designated by the parameter.

The types of the nodes designated by the parameters are specified in the
where-clause. In some operations there may be several alternative types for a
parameter, the particular one actually designated varying from invocation to
invocation. In our example, the parameter cas designates an fassigmment-
statement} node and thus, the whole tree of which it is the root node. An
operation may return a camplete tree, in which case the type of its root node
will be specified in the result-clause of the heading. The create-assignment-
statenent operation returns a camplete tree with an <assigmment-statement>

root node.

The body of an operation consists of cither a sequence of Steps or a set
of mutually exclusive Cases, nubered saquentially. TFach Step or Case can
itself oontain a nested sequence of Steps ar a set of Cases. If so, the
numbering in the i'th Step or Case will be sequential fram i.l. This nested
structure continues to arbitrary depth. The Steps of an operation are executed
sequential ly except when modified by a control instruction. Each Case is
preceded by a predicate whose truth value determines whether the body of the
Case is to be executed. There must always be one and only one Case whose

predicate is true when any set of Cases is executed. For brevity, the predicate

of the last Case may be " (Otherwise)" which is true if and only if all the

other Cases are false. This abbreviation is only used where it saves wntux;

out a lengthy negation of all the previous predicates.

4.3, Variables

In the body of the operation, local variables are used to designate parts

of the émachine-state?, locally constructed trees, and parameters.

They may also be used to contain integer values. These local variables
are given names consisting of a few alphanumeric characters, usually of
mnemonic significance. By convention, these names are distinct from
English words to avoid confusion with the text. Local variables may

be subscripted. For example, nt[i] is an element of a vector of local

variables nt, the value of the variable i determining a particular

element.

Both local variables and locally constructed trees exist only for
as long as the operation is on an <operation-list». As soon as the
entry is deleted from the list, the local variables and trees cease to
exist. However, a local tree may be returned as a value of an operation,

in which case, it is copied to form a tree local to the caller.

4.4. Tree manipulation instructions

The let instruction makes a local variable designate an existing tree or
a newly created tree. For example, in the operation create-assigrment-statement:

Step 1. Let id and cx be respectively the immediately contained
fidentifier} and fexpression} of cas.

N The variable cas is a parameter of the operation and designates an fassigrnment-

statamentp node in the concrete nrogram. This node is defined by the Concrete

Syntax rule:

HL1l. fassignment-statement} ::= ({identifierp = {expression}

This let instruction creates two local variables, id and cx, which respectively

designate the {identifier? and fexpression} immediate components of the node
designated by cas. Both thesc trees existed before the let instruction was
executed. In the following let instruction:

Let dso be

<output-dataset>:
<dataset>:

<alpha»
“<anega>.

a tree is constructed and the local variable dso is made to designate it.

Another way to construct a trece is by copying trees designated by local variables.
For example:

Iet ids be]
<input-dataset>:
ds
<4current-position?:
dg;;

: lere, a tree with root node of tyme <input-dataset® is constructed and
one of its immediatc components is a copv of the tree designated by the
local variable ds. Similarly, the new constructed tree contains a cooy
of the tree designated Ly the @ local variable da. The variable ids

designates the entire newly constructed tree.

There 1is an implicit form of the let instruction in which the name

| of a local variable is listed following some description of a root node

and a comma. For example, in the predicate of the case:

Case 1.1.2. cx immediately contains a fconstant*, cn. Tf the

predicate is true then the local variable cn is made to designate the

constant node. This form of the let instruction can also be used in

enumerated trees.

The let instruction is also used to introduce a vector of local variables.

For example:

Let nt[i], i = 1,...,n be the ordered list of nodes which are the
immediate camponents of- the fdelimiter} and {non—delimiter$ nodes of t.

sets a vector of n designators nt. References to elements of this vector will

be subscripted with a local variable containing an integer value.

The replace instruction is used to substitute a specific tree for a
tree designated by a local variable. For examle:
Replace the <basic-value? desimnated by bvd by a copy of bv.

The replacament takes place at the nade designated bv the local variable

and the unique name of the original node becomes the unique name of the

root of the replacement.

The append instruction attaches a tree as the rightmost element of a list.

By definition, there are no empty list nodes in the <machine-state®». To awoid
special cases, the append instruction will construct the -list node if it

is appending an element to a nomrexistant list. For example:

Append an
<executable-unit>:
id
axs;
to the <executable-unit-list> of the <program>,

Here, the append instruction causes a tree consisting of an <executable-unit>
with two immediate cawponents to be built and then added as the rightmost
component of the <exccutable-unit-1list> immediately contained by the abstract

program. The first time this instruction is executed, the <executable-unit-1ist>

node will have tn be created and connected to the <program> node.

S

The action of the remaining tree manipulation instructions, unlike those
described so far, depends on the syntax of the trees being manipulated.
The attach instruction constructs a trec by joining a specific tree to a
designated node. To make the link, the instruction mav create the minimm
nuther of intervening nodes required by the syntax rules for the tree.
For example, the tree for a fdeclaration} is defined by the rules:

HLS. fdeclaration} ::= fidentifiert |fattributeb]
HL6. fattributep} ::= FIXED | BIT

Suppose the local variable d desiqnates a fdeclaration} that does not contain

an fattribute} and thus can be represciited as:

tdeclaration$ <5 d

fidentifier}

Then the result of executing the instruction
Attach FIXFD to d.

is to make the tree designated bv d look like:

tdeclarationp <& d
| |
fidentifier} fattributep
FIXFD

The delete instruction causes a designated tree to be deleted from its

oontaining trece. If the deleted tree was a mandatory component of i‘s

immediately containing node, then this node is also deleted and the process is

repcated until a legal tree is obtained. All deleted nodes are discarded and

cease to exist. For example, part of the 4machine-state® is defined by the

26

rules:

M5. <internretation-state» ::= [<program-state>] <datasets>
M6. 4program-state® ::= <programcontrol® <allocated-storage>
Ixecution of the instruction

Delete the <program—control?» from the €machine-stated.

removes the <program-control®». But, since it is a required component of <program-
state?», the <program~state» node and its components are also deleted from the
<machine-state». The 4program-state® is only an optional node of the

<interpretation-state» and therefore thc deletions stop at this point.

4.5, Control Instructions

The execution sequence of an operation's steps follows the order
in which they are written unless one of the control instructions is
executed. In the normal sequential flow of control, once the last
step of an operation has been executed the operation is terminated and
deleted from the <operation~list>, thus returning control to the operation

that invoked 1it.

Of the control instructions, the qo to instruction is the simplest. Its

oxocution transfers control to a step in the active operation. For examle:

o to Step 1.

Control can be returned explicitly fram an operation to the calling operation
cither by executing a terminate instruction or by executing a return instruction.

The terminate instruction is written:

Terminate this operation.

e

27

The return instruction not only returns control to the invoking operation
hut also passes back a value. If the returned value is a local tree belonging
to the operation, the tree is copied to became a local tree of the calling
operation. Tor example:

Return
<logical-expression>:
<variable-reference>:

dd.

sends the specified tree back to the caller where it will be designated by

a local variable.

Control is passed to another operation by invoking it with the perfomm
instruction. For example, the instruction:

Perform create-logical-expression(cle) to abtain a <logical-
expression>, alx.

causes the create-logical-expression operation to be invoked. The local

variable cle strictly designates a tree and this designator is passed as

an argument. An <operation» for create-logical-expression becomes the
active operation. During this activation, the designator value being
passed as an argument is given a local name and i1s treated like a local
variable. The "obtain" part of the perform instruction is optional.

Where applied, it describes the type of value to be eturned and specifies

a local variable, in this case alx, to designate tnis returned value.

When control is returned to the calling operation, execution resumes |

immediately following the perform instruction.

In some circumstances, usually after a program execution error, it
is an Implementation decision whether an opecration is to be perforued.

In these cases, the phrase "optionally perform" is used. For example,

28

in the instruction

"If the magnitude of ir exceeds an implementation-defined maximum,
then let ir be an <integer-value®» with an implementation-defined

value and optionally perform abnormal-termination."

if the computed value ir has a maximum greater than the implementation's
maximum allowable value, the implementation has the option of continuing

or terminating the program's execution.

The for cach instruction srecifies that a sajquence of instructiors is to
be executed once with each member of a set of objects. TFor examle:

For cach <variable-reference>, vr, of the <variable-reference-list>
of st, taken in left-to-right order, perform Steps 1.1 throuwgh 1.4.

Here, the perform instruction is used to cause the execution of a self-contained

group of substeps similarly to the way that it is used to cause the execution

of a conplete operation. The Steps 1.1 through 1.4 will be executed once for
each elament of the <variable-refcrence-1ist>. Each time they are executed, the
t local variabic vr will desiqgnate the <variable-reference> currently being
operated on. Unless an ordering is specified, as it is in this example, the

order in which the claments of the list are chosen far processing is arbitrary.

The if instruction, althouwgh strictly speaking not a contro! instruction
] since it docs not change the order of execulion of Steps, does have some effect
on the execution of the insiructions win the Step. The if instruction

specifics that in the casc that the stated condition is true, the instruction

1ist that follows the then is to be executed. For example:

If the rightmost immediate camprnent of ul does not contain
freturn-statement} then append
funit}:
fexecut.ble=unit p:
fexccutable-single-statement}:
freturn-statamentds

RETURN

£;:b.
to ul.

Optionally, the if instruction can contain an otherwise part, in which case
the instructions that follow it are executed only if the stated condition is
false. Thus, for example, in the instruction:

If cd contains FIXED then attach <fixed> to ad, otherwise attach
<bit> to ad.

if the condition "the node designated by cd contains FIXED" is true, then
the node <fixed> will be attached to the node designated by ad. If the
condition is false, <bit> will be attacied. As in BASIS/1, we have no

conflict with the scope of an otherwise part since there are no nested

uses of the if instruction.

4.6 Validity Checking

In both the translator and the interpreter validity tests are
frequently applied to the program. These are specified by the must and

the must not instructions. For example:

The <declaration> designated by dd must contuin <fixed>.

or:
The <basic-value> designated by bvd must not contain <€undefined».

In either case, if the cordition is not satisfied the original source program

is in error and its meaning is undefined. The abstract machine stops in an

undefined state at this point. 1his is analagous to the situation in a real

30
machine for some types of program error.

4.7 Dynamic Macro

In both translator and interpreter operations it often happens
that one of a set of very similar cases is chosen depending on the

type of node being considered. This could, for example, be written as:

Step 2.
Case 2.1. <xs is an fif-statement}.
Perform create-if-statement(cxs) to obtain an <1f-sbat:ment), -
Case 2.2. cxs is an fassigmment-statement}.
Perform creatce-assigment-statement(cxs) to obtain an
<assigmment-statament>, axs.

Case 2.6. cxs is a fwrite-statementp. : _
Perform create-write-statement(cxs) to obtain a <write-
statement>, axs.

To avoid this rather lengthy case enumeration, a so-called "dynamic
macro" instruction is used and the above step is written as follows:
Step 2. Perform create-xxx-statement (cxs) to obtain an

sxxx-statement?, axs, where *xxx-statement is
the type of cxs.

Thus the use of "xxx" is analogous to the character string matching

and substitution commonly used in macro assembler languages.

|
|
I
|

31

5. INFORMAL DESCRIPTION OF SAL

A definition of SAL, a very small language of no practical value, will
be used to demonstrate the BASIS/1 method of language definition. The

following is an example of a program written in SAL:

DECIARE I FIXFD,
J,
B BIT;
I=2;
TOP: RIAD IMNMTO(A, B);
IFA 1
TN J = T,
TS, J =A% T
WRITF, FROM () ;
I=1+3;
IF n
THIN GO TO TOP;
RETURM ;
IND;

-
’

A program in SAL is a list of statements terminated by an end-statement.
Apart fram the end-statement, there are assigmment, conditional, declaration,
go~-to, read, return, and write statements. Like PL/I, there are no reserved
words in the language, The distinction petween keywords and identifiers is

made solely on cantext.

5.1. Variables

Variables may be declar««l in a non-executable declare statement that can

occur anywhere in the program. One of the two attributes, FIXED or BIT, may be

given to a variable. Fixed variables take positive or negative integer

values and bit variables take values 0 or 1, meaning false or true respectively.

If a variable is not declared, an inplicit declaration for it is constructed.
In the above exarple, therc is no declaration for the variable A and it will 1

be implicitly declared. If a variablc is not given an attribute in a declaration,

like J in the written declaration and A in the constructed declaration, it will

receive the attribute FIXFD by default. ‘Thus both A and J will be FIXED variables.

T Wy e TV R ey er T e T T

32

5.2, Assigrinent Statements and Expressicns

The execution of an assignment statement causes the evaluation of an
e xpression, producing either a fixed or bit value. This value is then assigned
to the variable referenced on the left-hand side of the equals symbol. The
type of the value must match the attribute of the variable to which it is
assigned, i.e., there is no type conversion. An expression may be a constant,
as in I = 2;, a reference to a variable, as in J = I;, a prefix expression,
an infix expression, as in J = A * I;, or a parenthesized expression. The
prefix and infix expressions arc restricted to operands that have integer
values. The prefix expression uses the negation operation and the infix
expression offers a choice of addition and multiplication. These operations
have the narmal precedence and parentheses may be used to change it in the
usual way. In the event of overflow, the effect is implementation defined. It
is an implementation decision whether the program is abnormally terminated or
an implementation-defined value is produced. Caonstants can be either decimal

representations of integers or bit values represented by "OB" and "1B".

5.3 conditional Statements

The conditional statament is of a conventional IF-THEN-optional-ELSE
form. The then and else parts may only be single statements and may not be
another conditional. The logical expression may be either a reference to a
bit variable or a comparison between the integer values of two expressions.

Both the cquals and not-equals comparisons are available.

5.4. Lalbels

Any executable statement, cxcept the then and the else parts of a
conditional statement may have a label. In the example, TOP: is a statement
label. The go-to statement causes control to be transferred unconditionally to

the named statement.

33

5.5. Input and Output
The input and output statements interact with a pair of files. The

input file, consisting of a list of integer and bit values, is read
sequentially by the read-statement. In executing a read-statement

o values from the input file are assigned to the variables in the read-
statement's list, in left-to-right order. The type of the value read
must match the type of the variable to which it is assigned. It is an
error leading to abnormal termination for a program to read beyond

the end of the input file. The output file is initially empty and the

write-statement appends integer and bit values to it.

5.6. The Return Statement

Execution of the return-statement causes normal termination of the

program. If there is no return statament immediately before the end-statement,

one is assumed.

6. The Running Example

T PRy L Ty "y

Having described the BASIS/1 definition mechanism and informally

described SAL, the latter part of this paper will present a formal

definition of SAL in terms of the mechanism. To illustrate the workings
of the definitional process and the trees that are constructed by the
Translator and Interpreter, we make use of an example SAL program, the

so-called "running example.'" The running example is:

i e e L b

DECLARE Y BIT,]
Z;
READ INTO (Y, 2);
IF Y THEN X = 2%Z + 1;
] EILSE X = 0;
| WRITE FROM (X);
! END ;

34

Hence, the rest of the paper will consist of the following parts:

(1) Initialization of the Abstract Machine.

(2) Definition of the parser operations for SAL.

(3) Parsing the running example to produce the concrete program.
(4) Definition of the constructor operations for SAL.

(5) Construction of the running example's abstract program.

(6) Definition of the interpreter operations for SAL.

(7) Interpretation of the running example.

The definitions of the three syntaxes for SAL will be interspersed in

appropriate places.

7. INITIALIZATION OF THE ABSTRACT MACHINE

In this section we describe the initialization of the abstract machine
which takes place at the beginning of the definition process. First we give

the syntax rules which define the <machine-state» during the translation

of the character string representation of the SAL program into its abstract
program equivalent. We then give the alaarithms that control the definition

prooess.

7.1. State of the Abstract Machine During Translation

Ml. <machine-state®» ::= <program> <control-state»
[«translation-state» | <interpretation-statey]
M2, <control-state» ::= <operation-list>
M3. <translation-state®» ::= [fprogram]
M4, <operatiom® ::=
The exact structure of <opcration? is left unformalized and unspecified.

During translation, the 4wachine-state> contains a <translation-state>

camponent .

The translation phase consists first of reading and parsing the source
program to form the fprogram} component of the <translation-state>. The
fprogramp is then translated into its abstract form which is attached to the

<program> component of the <machine-state>.

7.2 Machine Initialization

To begin the definition process the abstract machine is given the following
initial “machine-state> tree

«machine-state?:

<program>
<ocontrol-state¥:
<operation-list>:
<operatiom® for define-program ;;
<translatiomr-state>.

At this point, since the <operation® for define-program is the rightmost

operation of the <operation-1ist®, define-program becomes the active operation

and the abstract machine starts to execute it.

36

7.3. The Define-program Operation

This is the top-level algorithm that controls the whole definition
process.

Operation: define-program

Step 1. Perfomm translation-parse-phase.
Step 2. Perform translation-construction-phase.
Step 3. Perform interpretation-phase.
The translation—-parse—phase operation reads and parses the source program,
the translation-construction-vhase opcration translates the oconcrete program

into its abstract form, and the interprctation-phase operation interprets

the abstract program.

7.4. The Running Fxample

The execution of Step 1 in the define-program operation changes the
<machine-state?» tree to that shown in Figure 6. At this point, translation-

parsc-phase i1s the active operation.

<achino=statoe>

e — - e e —

<program> <oontrol -state» <translation-state»

“operation-1ist?

<operation® <oncration®
for for
define-proqram translation-parse-phase .

Figure 6. <machine=state® on executing Step 1 of
define-program.

37

8. T ONXCRETE SY''TAX

The concrete syntax of SAL specifies the written form of the language

and also the concrete tree. The concrete syntax is divided into two parts, a

lar=level syntax and a high-level syntax. Tie low~lcvel syntax classifies
sequences of characters fram the written fom of the nrogram, the "text", into

mon-delimiters (which are words and constants) separated by delimiters. The

———

high-level syntax defines the way that a program is built fram delimiters and
non-delimiters. The separation of the concrete syntax into two parts is done
to facilitate the context-sensitive reamoval of blanks and the separation of
words into identifiers and keywords. Because SAL does not have reserved
words, keywords must be distinguished from identifiers purely on the basis

of context.

8.1 The Low-level Syntax

Syntax for text

LL1. ftextd ::= [fdelimiter-listb] fdelimiter-pair-listp
LL2. fdelimiter-pair} ::= f{non-delimiter} {delimiter-list}
LL3. fdelimitert ::i= + | * | =1 =141 (1)1, 11 :1¥

Note: "§" denotes a blank.

LI4. frnon-delimiter} ::= ({identifier}
I

Syntax for identifiers and constants

LL5. fidentifier} ::= ({letterp
| fidentifier} (fletterd | fdigith)

6. Kletterp 2= AIBICIDIEIFIGINHII|IIIXKILIMIN

I 9 FPYQGITRESTTIUVEIVYIwWINIY) 2

IL7. fdigit} ::= 0111213145161 71819

38

LL8. fconstant} ::= {fixed-constant}p
| {bit-constant}

LL9. ffixed-constantp ::= fdigit-list}

LL10. fbit-constant} ::= {0 | 1}E

Syntax for characters

The input to the definition process is a fcharacter-list}. There are 47
characters in the SAL character set. Each character of the fcharacter-list}
that represents the program being defined belongs to one of three groups:
digits, letters, and delimiters.
fdigitp

-l. fletter}
| fdelimiter}

LL11l. f{characterp ::

8.2. The High-level Syntax

The goal of the high-level syntax is to classify sequences of delimiters

and non-delimiters into units which ocorrespond to SAL statements.

Syntax for program

HL1. §{programp ::= funit-listd fend-statement}

HL2. fKunitp ::= f{declarc-statement}
| fexecutablc—unit}

HL3. fend-statementd :: END

syntax for declarations

HL4. f{declare-statement} ::= DECLARE {declaration-commalist} ;
HL5. f{declarationt ::= {identificr} [fattributep]

FIXiD

HL6. fattributep ::=
| BIT

Syntax for exccutable-units

HL7. fexocutable-unithp ::= [{statement-nanc}]
{¢if-statementt | fexecutable-single-statement})

39

HL8. {statement-namep ::= fidentifier} :
HL9, {if-statement} ::= IF {logical-expressionp

THEN {executable~single-statement}
[ELSE f{executable~single-statement}]

Syntax for single-statements

fassignment-statement}
fgoto-statementp

HL10. {executable-single~statement} =
|
| fread-statement}
|
|

freturn-statement}
fwrite-statement}

HL1l. fassigrment-statement} ::= {fidentifier} = ({expressionp ;
HL12. fgoto-statement} ::= GOTO fidentifier} ;

READ INTO (f{identifier-camalist}) ;

HL13. {read-statement}

HL14. {return-statementp ::= RETURN ;

HL15. {write-statement} ::= WRITE FROM (fidentifier-commalist}) ;

Syntax for expressions

HL16. {1ogica1-@cpression* ::= fidentifierp
| fexpression} {= | #) {expression}

HL17. fexpressionp ::= [fexpression? +] fexpression-twop

HL18. {expression-twop ::= [fexpression-two} *] {expression-one}

HL19. fexpression-one} ::= {primitive-expression}
| = fexpression-one}
| (fexpression})
[HL20. fprimitive-expression} ::= {identifier}
| foonstantp

9. THE TRANSLATOR (PARSE PHASE)

The function of the parse phase of the translator is to take the character
list representation of the SAL program and generate a corresponding concrete

program. The parsing is performed in two stages corresponding to the two

levels of the concrete syntax.

9.1 The Operations

Operation: translation-parse-phase

Step 1. Obtain from a source outside this definition & sequence of characters
oconstructed in the form of a {character-listp, cl.

Step 2. Perform parse(cl) to cbtain a fprogramp, cp.
Step 3. Attach cp to the <4translation-state>.

Oreration: parse(cl)
where: cl is a fcharacter-1ist}
result: a fprogramp
Step 1. Perform low-level-parse (cl) to obtain a {text}, tx.

Step 2. Perform high-lovel-parse (+x) to obtain a fprogramdp, cp.
Step 3. Return cp.

Operation: low=level-parse (cl)

where: c¢l is a fcharacter-1ist}
result: a ftextp
Step 1. There must exist one and only one tree, tx, with respect to the low~
level syntax for ftext}, such that the terminal nodes of tx, taken
in left-to-right order, form a fcharacter-list} equal to cl.
Step 2. Return tx.
A keyword is an {identificr} which maps into a type specified in the high-level
syntax by explicit spelling without any metabrackets.
The following is a production for a type that is used solely in the following

opcration and is thus specified here rather than in the concrete syntax:

fdelimiter-or-non-delimiter} ::= f{delimiter}
| ¢non—delimi ter}

Operation: high=level-parse (tx)

where: tx is a ftext)

result: a forogramp

Step 1. Let t be a {delimiter-or-non-delimiter-1ist} which contains a cooy
of the fdelimiter} and fnon-delimiter} components of tx in exactly
the same order.

e .

41

Step 2. Delete fram t any fdelimiter} containing a "¥". This must not cause
t to be deleted.
Step 3. Let nt[i], i = 1,...,n be the ordered list of nodes which are the
immediate components of the fdelimiter} and fnon-delimiter} nodes of t.
Step 4. There must exist one and only one tree, ht vhich is a camplete tree
with respect to the high-level syntax for fprogram} such that ht
contains terminal nodes nht[i] i=1,...n and there is a one-to-one
correspondence between nt[i] and nht[i] as specified by Cases 4.1
through 4.3.
Case 4.1. nht[1] is a keyword.
The node nt[i] must be an {identifier} containing the same
terminals as the characters appearing in nht[i].
Case 4.2. nht[i] is an fidentifier} or fconstant}.
The nodes nt{i] and nht[i] must be of the same type. Replace
nht[i] by nt[i].
Case 4.3. nht[i] is a non-bracketed type other than a keyword.
nt[i] and nht[i] must be equal.
Step 5. Return ht.

9.2 Application to the Running Example |

The Parse Phase of the Translator is illustrated, first by taking part
of the character representation of the Running Example through the low-level
parse and then showing the build up of the entire program. Figure 7 shows
the situation at Step 1 of translation-parse-phase. The section of the
fcharacter-1ist}, cl1 that corresponds to:

IF Y THEN X = 2*Z + 1;

is shown with each character classified as a fletter}, fdigit}, or {delimiter}

according to the syntax for characters LL11.

fcharacts r-listh

‘r—‘;IlrlrlvﬁWiﬁirl1lTllﬁ
$CF 4CF $CF FCF P KCH £0P FCP F0P KCH {7P ECH LCP HCY KCP LCP KCH (CP ICP KCH KC) $CP ’

R o N [N (R R TR TR T
u',t KLY EAD PP ESP KTH FLD KLD KT EOF CLD £AP EAY £AD DR plw nl.) c?) cis) ulst ﬂla» ¥

[T T T I S R R R
¥ P B Y P T B BE N ¥ X P = g 2 % § P ¢ P A 3

fC¥ represents fcharacterd, (1.} rerrenents fletterd, §D) represents fdigith,
and 2} ropresents foelimiterd,

A broken connecting 1ine indicates the amission of one ar more nodes,

Figure 7. Part of the fcharacter-list} representation of the !
Running Example.

The result of applying the operation low-level-parse to this {character-

list} is to obtain the ftext} tree which consists of a fdelimi ter-pair-

list} as shown in Figure & The section of {text} that is shown there
corresponds to the same section of the fcharacter-list} that was shown

in Figure 7.

The operation high-level-parse constructs a {delimi ter-or-non-
delimiter-1ist} that matches the {delimiter} and fnan-delimiter} components
of the ftextp. The section of the {delimiter-or-non—-delimiter-list} that
is derived from the part of ftext} shown in Figure 8 is shown in Figure %a.

In order to save space, the trees for fidentifier} and fconstant} are
represented by their root and terminal nodes only. The next step is to
remove the blanks framn the fdelimiter-or-non-delimiter-1ist}. The result of
this is shown in Figure $b. The correspondence between elements of the vector

nt of Step 3 and nodes of the {delimiter-or-non-delimiter-listp is also shown.

The high-level-parse continues with the construction of a tree according
to the high-level syntax. Step 4 oonstructs this tree with a fprogramp root
node, designated by the local variable ht. Its terminal nodes are either
fidentifierp, or fconstantp nodes or else delimiters. These terminal nodes
must match in left-to-right order the nodes of the fdel imiter-or-non-delimiter-
listp. Figure 10shows the section of the {program} tree ht that corresponds
to the section of the fdelimiter-or-non-dclimiter-list} of Figure 9b. The
elements of the vector nht of Step 4 that designate nodes in the figure are

also shown.

It is at this point that the distinction is made between keywords and

program identifiers and the specific details for each fidentifier} and

foonstantp are filled in. This results in the fprogramp tree section shown

a|dwex3 bupuuny ay3 jO uOiIRIUISAUdaJ ¢3IXR} Y} JO JJed ‘8 aanb 4

1 z
|
31_.“3 H16™1
| _
{38713 161D} z {3sT1-3 101}
| _ |
: {umsuco-pox1yy o + P ¢13391% . {3uea IO pIX 34
_ _ | _ _ |
4T T | 303 {aues sucoy tﬂd.,_a_%u 43 Tt 19p) ~§u_._fm8 {13 USPTY 4733 T 33 {3rnc ooy
| | — : | _ |
4IST|~IR T3y {T93 TuIT [9p-uouy ﬁm:qu?ﬂw& fdu?a"%&o& {QSTI~ITT (3P} 4T3 LT | op-iouy
o I.umaanﬁwﬁ.ﬂa f...,drawﬁﬂwﬁ ‘auﬂ_ﬂh_%u
g
€L
|
H {I=R321%
_
a :Luo: 4T TIWPTY .
X N ft.u_uu: {PIIRUPTY A 4 ﬁn.._...s
_ . _ |
A M | {13334 a tﬂ_:u: ¢T3 TRuoDTY P (mzay g 4Ly AM.,W,._..#u
| | _ P o | _ e e
tuan_-rua tsm.a 1303 ..ﬂ:.a_ﬁaa ‘Ec_ﬁ..%u tﬁuﬂ_ﬁ to‘..ﬂ_u.&va taﬂ,_,q 1203 {reT: «mﬁ%.u *13.....5.» .5-.1.4.4
ﬁn.:.nd-ﬂg—g tuué:mauncﬂa QST TN TWT 3P} IRV TT{ODLOU} {3IST|~TNRTWI|3Y ¢TI0 T (Ip-Uowy {3sTL ;....wuar.« 1208 .uJ..ua;mvucQ&
ﬁdajuvﬂéa 1303 wh&!ﬂHﬁ. (€5 tdcrnw T

43st —l.ucm(T T | 3Py

{3xn3

44

*syue|q JO |PAOWAL 433je ©g dunbij
UL UMOYS ¢3ST|=-T93TWT |SP-UCU-IO-TNTUT 3P} Y3 40 UOLII3S 3y)

*S9pOoU 2I0W IO SUO JO UOTSSTUD 3Y3 SI3EOTPUT 3UT| BUTIDBULCO uaHoIg ¥

*{3urysucoy} sjuesaxdal ¢3Iswy pue ‘{ISTITIUSPTH suesaxdal ¢{pry

‘I3 TurT |3p-ucuy suUSsaIdal {puy

4 4 193 TUIT | SP-UCU-IO-T} TUIT | 3P} SIUesaidal {puopy

*qg 94nbi4

[L1]3u [91]3u

[st]3u

\

[sz]3u (¥z]3u [€z]3u [zz]3u [tz]3u [0z]3u [61]3u [BT)3u
1 % 4 X X d1
I] | I]
| ! 1 | 1
1 . 1 | |
: {3Iswy} 991 m {FTy 4P} 4{rT}
L
*mﬂ {puy Amﬁu :x—h {93 {puy Aﬂ_uu {72 Lo} :x—a :u_..u
:.Eﬂ,u Auc._.ﬂu ﬁ,E_HJ a.nd—ﬂd Avcmﬁu {puory *ur.n—n.a ﬂvs..ﬂu Aucwvu Am!n_ﬁu aMi—NJ
43ST | =193 TUT | Sp-UCU=-I0=-133 TUT |}
*3|dwex3 buruuny 3y3 o
UOL3PJU3SALdaL ¢IST|-ISFTUT |SP-UCU-TO-TSITUT |ID} BU1 40 R4 “Pg 24nbiL 4
T < Z REHL X
| | 1 f i |
| | . | | |
]]]
‘ .ﬁdu“ ﬁ—_ _ “_. %_c ﬂ ﬁm__u“ “_. u_ i .um. 2 %__: “__ .E_. ﬂ
430} :ﬂ“s Auw_d am«_uu AN_& tx—s {33 *mx—; *&—d h&-é Aﬁ._d $¢~a aﬂ.ﬂ au—:» ax_.u An._.a a‘_u
ﬁcﬂ; ,:uoﬁ .SME caﬂ& .u.n_ﬂ *?_8“ ::_—xx :amg ax_i .é_ﬂ .EHS aﬂ—ﬂ .urn_.& .E_uﬁ .u._unu 3...”“3 .u.aFS aﬂa

{IST | ~T373 TUIT | 3P -UCU-TO-IJ3 TUT (3P}

*qg a4nbL4 uL umoys
{AST | =T93 TWIT | SP-UOU-TO-ISJTUIT |3} 3Y3 Saydjew eyl 343 Juexbaxdy ayjz 4o jaed 3yl °Of1 a4nbi 4

?ﬂﬁ: _”-Nﬁt ?&u/ﬁ) [zz]3yu [tz]3yu Homﬂ” (61 Ryu [8T]3yu HZA_ [91])3wu ?A
: {3ue3sucoy + Vunﬁun /. ﬁﬁu_mco& /n V:nﬁvc NCIHL //.V~ 3TauspTy a1
{uotssaxd@-aaT3 Turady
{uort mmmuaxw_agﬁ Turtady {auo-uoTssaadxay
ngmau@ﬂ_éﬂug&u Agncom ssaxdxay {omy L._om ssaxdxay
{auo-uoTssoadxay {avg -uotssaudxey
2 _ |
<
{om L-oamgﬂu Acawn_wua.g
*coam.ﬂ.ﬁu&ﬂu
ﬁgﬂmwucﬂﬁguﬂ
ﬁcﬂ.ﬂuSml.u_J—.wm.b_nﬂu:u@ﬂu Q.Bammwu&_alﬂ.,uuoC
|
Uy n—umnu 3
{ATun-9| noSXey
43Tuny
[o |
{Iusum e3s-puay {istaTuny

l |

46

in Figure 11 This is done by the three cases of Step 4. Case 4.1 applies
where an element of nht designates a keyword. For example nht[15] designates the
keyword IF and nt[15] designates an fidentifier} containing IF. Case 4.2

applies where elements of nht designate fidentifier} and fconstant} nodes.

For example, nht[18] designates an fidentifier} and nht[20] designates a

fconstant}. For these nodes, the fprogram} tree is completed by copying

the details fram the {delimiter-or-ron-delimiter-list}, in these two cases,
copying the sybtrees of the nodes designated by nt[18] and nt[20] respectively.

Case 4.3 ensures a match between delimiters, for example nht[22] and nt[22]

both designate an asterisk.

The fprogram} tree shown in Figure 11 is a section of the complete concrete
program of the running example. Once it has been constructed, the {program}

tree is attached to the <translation-state® as indicated in Figure 12.

10. THE ABSTRACT SYNTAX

The abstract syntax deliberately bears a strong resemblance to the
corresponding parts of the concrete syntax. The relationship between these

parts is intended to be intuitively obvious. The main difference is that

those parts of the concrete syntax whose only function is in the written form

of the program have been amitted in the abstract syntax.

Syntax for programs

Al. <program> ::= [<declaration-1ist>] [<executable-unit-1ist>]

Syntax for declarations

A2. <declaration> ::= <identifier> <attribute>
A3, <Lattribute> ::= <fixed> | Dit>

47

°qg 4nbi4 UL UMOYS 43ST|-Tag TuIT | Jp-Ucu

~I10-T93 TUIT (9P} Y3 J0 3Jed ayy buiydjew 3343 queabaxdy paja|dwod jO u0i3IBS -1 34nbL4

1 9713 167P}
|
*oﬁ_a 2 43U BUCO-PIAXT I
_ | |
871316703 $333313 {3ue3sucoy
_ _
ﬁ:ﬂuw._n.._uuﬂﬂuu ¢IPTITRUSPTY {uorssaidxo-oAT3 Turady
_ |
Quesuoy {uoysEAIE-3ATS TUrTIdy {auo-uors saxdxay
gmnwﬁxrﬁ«i ﬁucolcoq_—vﬂwu&au m nancg__mﬂﬁﬂxuu
_
{3uo-uctssaxdxay ﬁgkoﬂ—mﬂuﬂg X
| _ _
gqn.commﬁu&ﬁ& .¢ *cﬁugax.& fﬂduwa A
m acoam“w&gu m *Unm_ﬂuﬁuﬂ .Nu_oc
ﬁcw.ﬂuﬁml_ucwhmﬂmmﬂ *Na._.«.l_.g
35.355,?_:.@58693 NTHL au#nﬂn.x_?_ﬂ«no:
e | _ _
fuamns;T
ﬁﬁufw_n_“ﬁ.ﬁaxuu
] aa ﬁuq,_c:u
L3 i el L
HRusum vs-puay 45T |3 TUn}

{ue1b0xdy

48

*3|dwex3 buruuny 3yl 404 3343 quexboxdy [etjued e HuruLeIUDD 3PIS-UTUDRD 3Y)

U eIs-yuauubrssey

UM s BUTS D qearoa®) IS {IUASILIS-I|BUTS-5| qeanoexey NIHL {uoTssaxdxe-|eoTho 1}

(. 1

{fuansyeys-yuaubTsse}

1]

+z7 24nb}14

1
{IuauseyIs-J T} _N .h_nm w
{0 (ST PWKD-TBTIUTY) ZWE PJE: _. A- ﬁmfﬂEBv_um.Cﬁ:uvﬂ N DH._-/.H 41813 3UspTY {3anqrnie} <{IBTIRIUPTY
el] _ _I._.l._
Aucﬂhumwu—mnhuun& *ugﬂ—umnﬁmﬂuu {quoTyexe | >3py . Juoraere (o3P}
| | o e
{Iuaum ey s-o | buts—o | qeanoexey {Iuaum eys-3| buts—s|qeandaxey ! {357 | BpO-UoTIRIR | D3pP)
| | : :
|
ﬁﬁ!lu_.n_ﬂaﬂﬂu {3 U9 | qeynoaxa} ﬁgbpnﬂu:umxwu {Iuau ey s-are | d3py
: a3 {3ITuny Uy 3umy {Tumy
.I|||_ 1 e 1 I
ﬁ:ﬂﬁuuﬁmu@:& ﬁmﬁﬂﬂuﬁsu
r—
{ueiboady
€| s-uUorje|sueny €RQ IS~ QTIUCY qureiboady

1

|

ms-[uToRy

49

Syntax for executable-units

A4, <executable-unit> ::= [<statement-name>]
{<if-statement> | <single-statement>)

A5, <statement-name> ::= <identifier>

Syntax for if-statements

A6. <if-statement> ::= <logical-expression> <then-unit> [<else-unit>]

A7. <themrunit> ::= <single-statoment>

i}

A8. <elsc—unit> <single-statement >

Syntax for single-statements

A9. <single~-statement> ::= <assignment-statement>
| <goto-statement>

| <read-statement>

| <return-statement>

|

write-statement>

Al10. <assignment-statement> ::= <variable-reference> <expression>

All. <goto-statement> ::= <executable-unit-designator>
| <identifier>

Al2. <read-statement> ::= <variable-refererice=list>

Al13. <write-statement> ::= <variable-refcrence-list>

Syntax for expressions

A14. <logical-expression> ::= <expression> {<eq> | <ne>} <expression>
| <variable-reference>
Al5. <expression> ::= <variable-reference>
| <constant>
| <infix-expression>
| <prefix-expression>
Al6. <infix-expression> ::= <expression> {<add> | <multiply>} <expression>

Al7. <prefix-expression> ::= <minus> <expression>

Syntax for references

Al8. <variable-refercnce> ::= <declaration—designator>

Al9. <identifier> ::=

<identifier> is defined as a fsymbol-list} corresponding to the sequence of

' characters in {identifier}.

Syntax for constants

<1nteger-value?>

A20. <constant> ::=
| <bit-value>

An <integer-value> is a <machine-state% type, defined in Section 12, rule M13,
that contains a single element of Uw set of integers. A <bit-value? is

defined in rule M12 and contains one of the values <true» or <false>.

11. THE TRANSIATOR (CONSTRUCTION PHASE)

The portion of the definition algorithm described in this section first
expands the concrete tree by applving the defaults and then constructs the abstract
program component of the <4machine-state®. During the construction, checks

are made for context dependent errors.

Operation: transletion-consu uction-phase
Step 1. Pertfom completo-concreto=progran,

Step 2. Perform validate-ooncrete—Jdeclarations.

Step 3. Perfonn croato=progra,

Step 4. belete the <trans! dhomestate> trom the €«machine-state>.

11.1 Fxpanding the Concretc Tree

The operations of this section add components to the {program} corresponding

to implicit declarations, attribute defaults and the terminal return statement. .

i

E
L—‘-‘-—m__f

51

Operation: ocamplete-concrete-program

Step 1. Perfom implicit-declaration.
Step 2. Perfomm attribute-default.
Step 3. Let ul be the funit-1ist} of the {programp. If the right-most
{executable-unit} component of ul does not immediately cmtam
fexecutable-single~statement}:
fretum-statement;
then append to ul
funit):
fexecutable-uni t}:
{executable-single-statement}:
freturn-statement}
RETURN
) & I

Operation: implicit-declaration

Step 1. Let ul be the funit-list} of the {programp.
Step 2. Far each fidentifier}, id, contained in an fexecutable-unit} of ul,
perform Step 2.1,

Step 2.1. If id is not contained in a {statement-name} or f{goto-statement}
and if there is no fdeclare-statement} that contains id then
attach to ul

{declare~statement}:
DECLARE
{declaration-comalistp:

fdeclaration}:
id s

£:be

Operation: attribute-defaults

Step 1. Let ul be the funit=listd of the fprogram}.
Step 2. For each tdeclarationp, d contained in ul, perform Step 2.1.
Step 2.1. If d does not oontain an {fattribute} then attach

FIXED to d.

11.2 Analyzing Declarations

The operation in this section checks that no identitier is declared more

than once.

Operation: validate—concrete-declarations

Step 1. The fprogramp must not contain two or more fdeclaration} nodes

whose fidentificrp components are equal.
Step 2. The fprogramp must not contain a fdeclarationd that has an
fidentifiery that is ecqual to an fidentifierd contained in a

fstatcoment-name}.

11.3 Building the Abstract Tree

The operations of (his section construct and attach to the abstract
<program> an abstract <executable-unit> or <declaration-unit> corresponding
to each <unit>. Declarations are translated before executable-units to
facilitate the building of designator nodes. Since a <goto-statement> may
contain a forward refercuce, the final operation is to resolve the statement-
name rceferences in the —goto-statement> and replace them by <executable-unit-

designator>s.

Operation: create-program

Step 1. Let vl bLe the {unit-listk contained in the {programp.

Step 2. For each flcclarationd,), cortained in ul, perform create-
abstract-decliaration(d) .

Step 3. ¥For each { exceut bl -wiitd, <y, contained in ul, taken in left-
to~right order, pcrform constrct-abstract-statement(e u) .

Step 4. Perfora comy lete-gotos.

Operation: or decia

Operation: create—wsoract =declarat ton{ed)

wheros a1 is g bdeciraiond

Step 1. 1ot aid e orhe Fhoentifiork of ol Perform create-identifier(cd) to
obtain an <identifier>, id.
Step 2. (f ol contarns PIFED then ot atr be <fixed>, otherwise let atr be <bit>.
Sten 3. Apnend a . TRE
“declavation>:
icl
lattributed>:

i i
to the <Hrogram.

33

Operations for executable units

Operation: oonstruct-abstract-statament(ce)

where: ce is an f{executahle—unit}

Step 1. If ce immediately contains an fexecutable-single-statementp, ess,
then let cxs be the immediate camponent of ess, otherwise let cxs
be the immediately contained Kif-statement} of ce.

Step 2. Perform create-xxx-statement(cxs) to obtain an <xxx-statement>, axs,
where cxs is an fxxx-statementp.

Step 3. Let eu be an <executable-unit>. Attach axs to eu.

Step 4. If ce contains a fstatement-name} then perform Steps 4.1 and 4.2.

Step 4.1. Let cid be the fidentifier} immediately contained by the
f{statement-namep of ce. Perform create-identifier (cid)
to obtain an <identifier>, id.
Step 4.2. Attach id to eu.
Step 5. Append eu to the <program>.

Operation: create—if-statement(cif)

where: cif 1s an {if-statementp
result: an <if-statament>

Step 1. Let cle be the flogical-expressiond contained in cif. Perform
create-logical~expression(cle) to cbtain a <logical-expression>,
alx.

Step 2. Let ess be the leftmost fexecutable-single-statement} contained in
cif. Let cxs be the {xxx-statementp ocontained in ess. Perform
create~xxx-statement(cxs) to obtain an <xox-statement>, axs.

Step 3. let aif be

<if-statement>:
alx
<then~unit>:
<single-statement>:
axs.

Step 4. If cif ocontains ELSE then perform Steps 4.1 and 4.2.

Step 4.1. Let ess be the rightmost {executable-single-statement)
ocontained in cif. let cxs be the foooc-statementp
contained in ess. DPerform create—xxx-statement (cxs)
to obtain an <ox-statement>, axs.

Step 4.2. Attach an

<elsc-unit>:
<{single-statement>:
axs;;
to aif.
Step 5. Return aif.

54

Operations for single statements

Operation: create-assignment-statement (cas)

where: cas is an fassignment-statementp
result: an <assignnent-statament>

Step 1. Let id and cx be respectively the immediately contained fidentifier}
and fexpression} of cas.
Step 2. Perform find-abstract-declaration(id) to obtain a <declaration=
designator>, dd.
Step 3. Perform create-expression(cx) to abtain an <expression>, ax.
Step 4.
Case 4.1. ax immediately contains a <variable-reference>, vr.
The <attributo-contained by the <declaration> designated by
dd must equail the <attribute> contained by the <declaration>
designated by the <declaration-designator> of vr.
Case 4.2. ax immediately contains a <constant>, c.
If ¢ contains an <integer-value» then the <declaration>
designated by dd must contain <fixed>, otherwise it must
contain <bit>,
Case 4.3. (Otherwise).
The <declaration> designated by dd must contain <fixed>.
Step 5. Return an
<assiqgmment-statanent>:
<variab!«—refercnced:
dd;
ax.

Operation: create-goto-statem nit.(cgs)
wherc: s 1e ¢ pgoto-statonentd
result: a Woto-statonent>

Step 1. Let cid be the {identifierd contained in ogs and perform create-
identifier (cid) ‘o obtain an <identifier>, id.
Step 2. Return a
<yoto=statonent>:
id,

Operation: creatce-read-statement (crs)

where: crs 1s a fread-statanent)

result: a <read-statoment> 2

Step 1. lLet ars be a “read-statment>,
Step 2. Let idl be the fidentifier-camalistp of crs.
Step 3. For each fidentifier}, id, of idl, taken in left-to-right order,
per form Steps 3.1 and 3.2,
Step 3.1. Perform find-abstract=declaration(id) to obtain a
<declaration=lesignator>, dd.
! Step 3.2. Append <variable-reference>: dd; to ars.

Step 4. Return ars.

‘ 55

Operation: create-return-statement(crs)

where: crs is a freturn-statement}p

result: a <return-statement>

Step 1. Return a <return-statement>.

Operation: create-write-statement(cws)

where: cws is a fwrite-statementp
result: a <write-statement>

Step 1. Let aws be a <write-statement>.
Step 2. Let idl be the fidentifier-commalist} of cws.
Step 3. For each fidentifier$, id, of idl, taken in left-to-right order,
perform Steps 3.1 and 3.2.
Step 3.1. Perform find-abstract-declaration(id) to obtain a
<declaration—designator>, dd.
Step 3.2. Append <variable-reference>: dd; to aws.
Step 4. Return aws.

Operations for expressions

Operation: create-logical=-expression(clx)

where: clx is a {loqical-expressionp
result: a <logical-expression>
Case 1. clx immediately contains an {identifierp, id.

Step 1.1. Perform find-abstract—declaration(id) to cbtain a <declaration-
, designator>, dd. The <declaration> designated by dd must contain
1 <hit>.
Step 1.2. Return
<logical=expression>:
<variable-reference>:
dd.
Case 2. clIx has threc cawponents, cx1, op, and cx2, in left to right order.
Step 2.1. Perform create-operand(cxl) to chtain the <expression>, axl.
Perform create-operand(cx2) to obtain the <expression>, ax2.
Step 2.2. If op is = then let aop be <eq>, otherwise let aop be <ne>.
Step 2.3. Return i
<logical-expression:
axl
aop
ax2.

}
!
|
4

Operation: create—expression(cx)

where: cx is an fexpression}, fexpression-two}, fexpression-one},
or {primitive-expressionp.

result: an <expression>.

Case 1. cx is an fexpression}, fexpression-twop, or fexpression—one}p and cx
has only one camonent, cxc.
Perform create-expression{cxc) to optain an <expression>, ax. Return ax.
Case 2. cx is an fexnression}, or {expression-twop and has three components,
cxl, copn, and cx2, in left-to-right order.
Step 2.1. Perform creatc-operand(cxl) to abtain an <expression>, axl.
Perform create—operand(cx2) to obtain an <expression>, ax2.
Step 2.2. If copn is + then let aopn be <add> otherwise let aopn be <multiply>.
Step 2.3. Return an
<expressiond:
axl
aopn
Case 3. cx is an fexpression-one} with two camponents, copn and cx1, taken i. ieft-
to-right order.
Perform create- operand(cxl) to obtain an <expression>, ax. Return an
<expression
<prefix—expression>:
<minas>
ax.
Case 4. cx is an fexpressionmoned with three components, cl, cx1, and c2, thken in
left-to~right order.
Perform create—onerand(cxl) to obtain an <expression>, ax. Return ax.
Case 5. cx is a {primitive-expressiond ani contains an fidentifier}, id.
Perform find-abstract-declaration(id) to obtain a <declaration-designator>, dd.
Return an
exprassiond:
<variahle-roferences:
J(].
Case 6. ¢ is a fprimitive-exnressiond and contains a fconstant}, c.
Perform create—-corsitant (¢) to obtain a <oonstant>, ac. Return an
A vessiond:

it

Operation: create—operarxi(cx)

where: cx is an fexvressiond, fexpression-twop, fexnression-one},
or fprimitive-cxpression$.

result: an <expression>

Step 1. If cx is a fprimitive-exorossion} then perform Step 1.1.

Step 1.1.
Case 1.1.1. cx immediately contains fidentifier}, id.

Perform find-abstract-declaration(id) to obtain a <declaration-
designator>, dd. The <declaration> designated by dd must

ocontain <fixed>.

Case 1.1.2. cx immediately contains foonstant}, cn.
The fconstant}, cn must not contain fbit-donst}.
Step 2. Perfomm create-expression(cx) to obtain an <expression>, ar.
Return ar.

Utility operations

Operation: create—identifier (cid)

where: cid is an fidentifier}p
result: an <identifier>

Step 1. Return an <identifier> whose concrete representation is the same
as that of cid.

Operation: find-abstract~declaration(cid)

where: cid is an fidentifier}
result: a <declaration-designator>

Step 1. Perform create-identifier(cid) to obtain an <identifier>, id.

Step 2. Let dl be the <declaration-list> contained in the <program>.

Step 3. Let dd be a <declaration-designator> for the <declaration
containing id.

Step 4. Return dd.

Operation: create-constant(cc)

where: cc is a fconstant}.
result: a <constant>

Case 1. cc immediately contains fbit-const}, bc.
If bc contains 1B then let abv be <true», otherwise let abv be
<false». Return a
<constant>:
<bit-constd>:
abv.
Case 2. cc immediately contains a {digit-list}, dl.
let iv be an <integer-value®» equal to the value obtained by interpreting
the fdigitps of d]l in left-to-right order as a decimal integer.
Return a

{constant>:
iv,

58

Operation for goto cleanup

Operation: ocomplete~-gotos

Step 1. Let eul be the <executable-unit-list> immediately contained in the

<program>.
Step 2. There must not be two or more cqual <statement-name> components of eul.
Step 3. For each <goto-statement>, g, contained in eul perform Steps 4.1

through 4.3.
Step 4.1. Let id be the <identifier> contained in q.
Step 4.2. There must exist in eul a <{statement-name>, sn, which contains an
didentifier> equal to id.)
Step 4.3. Replace id by the <executable-unit-designator> that designates the
<executable-unit> containing sn.

11.4 Application to the Running Example

The first stage of this phase of the Translator is to complete the
concrete program by constructing a DHCIARE statement for any variables that
were not declared in the original program. The variable X in the running
example was not declared and a declaration with no specified attribute is
canstructed for it. The FIXED attribute is then included in any DECLARE
statement without un attribute specitied. The FIXED attribute is therefore
added to the fdeclaritiont tor X just constructed and to the fdeclarationp
for 7 which had no ottribute specified ir the source program. Finally, if
there is ro final RETURN statcment in the program, one is constructed and
appended to the funit-lisch. 'The resuit of campleting the concrete program
for the Running Example is shown in Figure i3 as a partial fprogramp tree.

This may<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>